混淆矩陣 要如何開始從零掌握Python機(jī)器學(xué)習(xí)?
要如何開始從零掌握Python機(jī)器學(xué)習(xí)?我已經(jīng)使用Python 7年多了,現(xiàn)在我正在從事視頻對(duì)象識(shí)別算法的開發(fā),使用的是同樣基于Python語(yǔ)言的tensorflow。Python是一種解決所有問題的
要如何開始從零掌握Python機(jī)器學(xué)習(xí)?
我已經(jīng)使用Python 7年多了,現(xiàn)在我正在從事視頻對(duì)象識(shí)別算法的開發(fā),使用的是同樣基于Python語(yǔ)言的tensorflow。Python是一種解決所有問題的語(yǔ)言,值得擁有
!我從2012年開始學(xué)習(xí)機(jī)器學(xué)習(xí),因?yàn)闆]有指導(dǎo),我走了很多彎路,浪費(fèi)了很多時(shí)間和精力。一開始,我讀了《機(jī)器學(xué)習(xí)實(shí)踐》一書。雖然我不懂,但我還是把書中所有的例子都跑了一遍,漸漸發(fā)現(xiàn)自己不懂算法也能達(dá)到預(yù)期的效果。然后,我會(huì)直接開發(fā)我想要的程序。當(dāng)我遇到需要機(jī)器學(xué)習(xí)的部分時(shí),我會(huì)直接復(fù)制它。一周后,演示會(huì)出來。在這個(gè)時(shí)候,你會(huì)發(fā)現(xiàn)你已經(jīng)開始了。剩下的就是理解每種算法的范圍和局限性。
不要掉進(jìn)無休止的書堆里,練習(xí)和做項(xiàng)目
!呃,地鐵到了。我要去工作了。我還沒做完呢。有機(jī)會(huì)我會(huì)繼續(xù)討論
這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡(luò)這樣的深度學(xué)習(xí)算法需要訓(xùn)練大量的數(shù)據(jù)集來建立更好的預(yù)測(cè)模型。許多大型互聯(lián)網(wǎng)公司更喜歡深度學(xué)習(xí)算法,因?yàn)樗麄儷@得的用戶數(shù)據(jù)是數(shù)以億計(jì)的海量數(shù)據(jù),這更適合于卷積神經(jīng)網(wǎng)絡(luò)等深度學(xué)習(xí)算法。
如果樣本數(shù)量較少,則更適合使用SVM、決策樹和其他機(jī)器學(xué)習(xí)算法。如果你有一個(gè)大的數(shù)據(jù)集,你可以考慮使用卷積神經(jīng)網(wǎng)絡(luò)和其他深度學(xué)習(xí)算法。
以下是一個(gè)圖表,用于說明根據(jù)樣本數(shù)量和數(shù)據(jù)集大小選擇的任何機(jī)器學(xué)習(xí)算法。
如果你認(rèn)為它對(duì)你有幫助,你可以多表?yè)P(yáng),也可以關(guān)注它。謝謝您!