卖逼视频免费看片|狼人就干网中文字慕|成人av影院导航|人妻少妇精品无码专区二区妖婧|亚洲丝袜视频玖玖|一区二区免费中文|日本高清无码一区|国产91无码小说|国产黄片子视频91sese日韩|免费高清无码成人网站入口

卷積神經(jīng)網(wǎng)絡(luò)算法 cnn卷積神經(jīng)網(wǎng)絡(luò)中的卷積核怎么確定?

cnn卷積神經(jīng)網(wǎng)絡(luò)中的卷積核怎么確定?從模型中學(xué)習(xí)卷積參數(shù),手動確定卷積核的大小和數(shù)目。二維卷積核的大小通常是奇數(shù),例如1*1、3*3、5*5、7*7。卷積核數(shù)是網(wǎng)絡(luò)中的信道數(shù)。常用的是128 256

cnn卷積神經(jīng)網(wǎng)絡(luò)中的卷積核怎么確定?

從模型中學(xué)習(xí)卷積參數(shù),手動確定卷積核的大小和數(shù)目。二維卷積核的大小通常是奇數(shù),例如1*1、3*3、5*5、7*7。卷積核數(shù)是網(wǎng)絡(luò)中的信道數(shù)。常用的是128 256 512,需要根據(jù)具體任務(wù)來確定。

另外,近年來,神經(jīng)網(wǎng)絡(luò)的自動搜索結(jié)構(gòu)非常流行。最著名的是Google的nasnet,它使用一些啟發(fā)式遍歷來尋找特定數(shù)據(jù)集的最佳網(wǎng)絡(luò)結(jié)構(gòu)。卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

2。卷積神經(jīng)網(wǎng)絡(luò)的發(fā)展歷史

3。反向誤差傳播

用訓(xùn)練集對卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行訓(xùn)練時,最終使卷積神經(jīng)網(wǎng)絡(luò)的前向性更好,計(jì)算損失函數(shù),然后根據(jù)鏈導(dǎo)數(shù)規(guī)則更新CNN的權(quán)值參數(shù)。這是調(diào)整各層網(wǎng)絡(luò)和卷積核的特征抽取器的參數(shù)(各層的特征和功能不同)。

訓(xùn)練是為了使整個卷積神經(jīng)網(wǎng)絡(luò)的特征提取效果更好(越來越適合于訓(xùn)練集),所以訓(xùn)練后的卷積神經(jīng)網(wǎng)絡(luò)可以提取訓(xùn)練集的特征。

運(yùn)行測試集的目的是測試特征提取器的能力。此時,通過訓(xùn)練集對CNN各層的參數(shù)進(jìn)行訓(xùn)練,可以提取出相似訓(xùn)練集的參數(shù)(圖像、聲音、文本)。此時,我們需要再次運(yùn)行測試集來測試CNN的特征提取能力。

數(shù)據(jù)集:機(jī)器學(xué)習(xí)任務(wù)中使用的一組數(shù)據(jù),每個數(shù)據(jù)集稱為一個樣本。反映樣品在某一方面的性能或性質(zhì)的項(xiàng)目或?qū)傩苑Q為特征。

訓(xùn)練集:訓(xùn)練過程中使用的數(shù)據(jù)集,其中每個訓(xùn)練樣本稱為訓(xùn)練樣本。從數(shù)據(jù)中學(xué)習(xí)模型的過程稱為學(xué)習(xí)(訓(xùn)練)。

測試集:學(xué)習(xí)模型后,將其用于預(yù)測的過程稱為測試,使用的數(shù)據(jù)集稱為測試集,每個樣本稱為測試樣本。

卷積神經(jīng)網(wǎng)絡(luò)作為特征提取器,用訓(xùn)練集訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)可以提取訓(xùn)練集的特征嗎?還是只能提取測試集的?

我們通??吹降木矸e濾波器原理圖是這樣的:

這實(shí)際上是卷積濾波器的“展平”或“展平”。例如,上圖中的粉紅色卷積濾波器是3x3x3,即長3,寬3,深3。然而,在圖中,它是在兩個維度中繪制的-深度被省略。

.由于卷積濾波器的深度與輸入圖像的深度相同,所以原理圖中沒有繪制深度。如果同時繪制深度,效果如下:

(圖片來源:mlnotebook)

如上所述,卷積濾波器的深度與輸入圖像的深度相同,即3。

順便說一下,輸入圖像深度是3,因?yàn)檩斎雸D像是彩色圖像,深度是3,分別是R、G和b值。

(圖片來源:mlnotebook)

總之,卷積濾波器的深度應(yīng)該與輸入數(shù)據(jù)的深度一致。

如何理解卷積神經(jīng)網(wǎng)絡(luò)里卷積過濾器的深度問題?

卷積神經(jīng)網(wǎng)絡(luò)通過用戶設(shè)計(jì)的損失融合(分類往往是交叉的)計(jì)算實(shí)際標(biāo)簽和預(yù)測標(biāo)簽之間的差異,使用梯度反向傳播最小化損失,并更新卷積核參數(shù)以生成新的預(yù)測值。重復(fù)此過程,直到培訓(xùn)結(jié)束。