python情感分析代碼 想自學(xué)python數(shù)據(jù)分析,難不難?
想自學(xué)python數(shù)據(jù)分析,難不難?首先,數(shù)據(jù)分析還有一定的難度,但只要通過(guò)系統(tǒng)的學(xué)習(xí)過(guò)程,大多數(shù)人都能掌握一定的數(shù)據(jù)分析知識(shí)。數(shù)據(jù)分析的核心不是編程語(yǔ)言,而是算法設(shè)計(jì)。無(wú)論是統(tǒng)計(jì)分析還是機(jī)器學(xué)習(xí)分析
想自學(xué)python數(shù)據(jù)分析,難不難?
首先,數(shù)據(jù)分析還有一定的難度,但只要通過(guò)系統(tǒng)的學(xué)習(xí)過(guò)程,大多數(shù)人都能掌握一定的數(shù)據(jù)分析知識(shí)。
數(shù)據(jù)分析的核心不是編程語(yǔ)言,而是算法設(shè)計(jì)。無(wú)論是統(tǒng)計(jì)分析還是機(jī)器學(xué)習(xí)分析,算法設(shè)計(jì)都是數(shù)據(jù)分析的核心。因此,數(shù)據(jù)分析必須有一定的數(shù)學(xué)基礎(chǔ),包括高等數(shù)學(xué)、線性代數(shù)、概率論等。當(dāng)然,如果通過(guò)工具進(jìn)行數(shù)據(jù)分析,即使數(shù)學(xué)比較薄弱,也可以完成一些基礎(chǔ)數(shù)據(jù)分析任務(wù)。例如,Bi工具可以完成大量的企業(yè)級(jí)數(shù)據(jù)分析任務(wù)。
使用Python語(yǔ)言實(shí)現(xiàn)數(shù)據(jù)分析是大數(shù)據(jù)領(lǐng)域的常用解決方案。利用Python實(shí)現(xiàn)基于機(jī)器學(xué)習(xí)的數(shù)據(jù)分析需要經(jīng)過(guò)數(shù)據(jù)采集、數(shù)據(jù)整理、算法設(shè)計(jì)、算法實(shí)現(xiàn)、算法驗(yàn)證和算法應(yīng)用等多個(gè)步驟。通常需要掌握一些常用的機(jī)器學(xué)習(xí)算法,包括KNN、決策樹(shù)、支持向量機(jī)、樸素貝葉斯等,用Python來(lái)完成這些算法比較方便,因?yàn)镻ython的numpy、Matplotlib、SciPy、panda等庫(kù)都會(huì)提供強(qiáng)大的支持。讓我們以Matplotlib中的一個(gè)簡(jiǎn)單示例為例:
因?yàn)镻ython語(yǔ)言的語(yǔ)法相對(duì)簡(jiǎn)單,所以學(xué)習(xí)Python的過(guò)程相對(duì)容易。難點(diǎn)在于算法的學(xué)習(xí)。如何在不同的場(chǎng)景下選擇不同的算法是關(guān)鍵問(wèn)題。此外,學(xué)習(xí)數(shù)據(jù)分析通常需要對(duì)行業(yè)知識(shí)有一定的了解。不同行業(yè)對(duì)數(shù)據(jù)分析維度的要求不同,這些知識(shí)需要在工作中積累。在工業(yè)互聯(lián)網(wǎng)發(fā)展的背景下,行業(yè)知識(shí)顯得尤為重要。
想做數(shù)據(jù)分析是學(xué)python還是學(xué)大數(shù)據(jù)?
大數(shù)據(jù)結(jié)構(gòu)中的很多組件都是用Java語(yǔ)言編寫(xiě)的,還有一些是用Scala編寫(xiě)的,比如Hadoop中的HDFS、MapReduce、yarn、ZK、HBase、hive、spark等。這些東西更傾向于數(shù)據(jù)工程、數(shù)據(jù)處理和計(jì)算。Python語(yǔ)言,包括pandas、numpy、SciPy等數(shù)據(jù)分析擴(kuò)展包,通過(guò)學(xué)習(xí)使用這些包,可以充分掌握數(shù)據(jù)分析的能力。因此,要學(xué)習(xí)數(shù)據(jù)分析,建議學(xué)習(xí)Python而不是大數(shù)據(jù)。