高中數(shù)學ln的知識點 對數(shù)函數(shù)特點?
對數(shù)函數(shù)特點?因為對數(shù)函數(shù)的解析公式是y=logax,這個解析公式也可以轉(zhuǎn)化成指數(shù)公式:x=A的y次方。因為A的y次方大于0,A的0次方等于1。所以對數(shù)函數(shù)的定義域是X>0,y∈R,Log1=0。
對數(shù)函數(shù)特點?
因為對數(shù)函數(shù)的解析公式是y=logax,
這個解析公式也可以轉(zhuǎn)化成指數(shù)公式:x=A的y次方。
因為A的y次方大于0,A的0次方等于1。所以對數(shù)函數(shù)的定義域是X>0,y∈R,Log1=0。
因此,對數(shù)函數(shù)的圖像位于Y軸的右側(cè),并通過點(1,0)。當a> 1是遞增函數(shù)時,當0< a< 1是遞減函數(shù)時。
對數(shù)函數(shù)的知識點?
N>O的對數(shù),1為零。常用的對數(shù)基數(shù)是10。Longa(mxn)=longam longn
Longa(M/N)=longam longn
函數(shù)的映象
對數(shù)的算法和公式
1的對數(shù)為零
lgio=1
Longa(mxn)=longam+longan
longam/N=longam longan
當a>0和a≠1時,M>0,N>0,然后:
(1)log(a)(MN)=log(a)(m)log(a)(n)
(2)log(a)(m/n)=log(a)(m)-log(a)(n)
(3)log(a)(m^n)=NLog(a)(m)(n∈R)
(4)變底公式:log(a)m=log(b)m/log(b)a(b>0和b≠1)
(5)a ^(log(b)n)=n ^(log(b)a)證明:
設(shè)a=n^x log(log(log(log(log)(log)日志日志(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)(log)M
3。Log(a^n)m^n=Log(a)m,Log(a^n)m^m=(m/n)Log(a)m
4。Log(基于n根符號的a)(基于n根符號的m)=Log(a)m,
Log(基于n根符號的a)(基于m根符號的m)=(m/n)Log(a)m
5。Log(a)B×Log(B)C×Log(C)a=1
對數(shù)與指數(shù)的關(guān)系
當a>0和a≠1時,a^x=n,x=㏒LN(對數(shù))。對數(shù)是指數(shù)的倒數(shù),正如除法是乘法的倒數(shù),反之亦然。這意味著一個數(shù)的對數(shù)是必須產(chǎn)生另一個固定數(shù)(基數(shù))的指數(shù),即乘法器中的對數(shù)計數(shù)因子。對數(shù)函數(shù)定義:稱為對數(shù)函數(shù),其中x為自變量。對數(shù)函數(shù)的定義域是。log函數(shù)的基本屬性:當x=1時,y=0。在那個時候,它是一個遞減函數(shù);在那個時候,它是一個遞增函數(shù)。