卖逼视频免费看片|狼人就干网中文字慕|成人av影院导航|人妻少妇精品无码专区二区妖婧|亚洲丝袜视频玖玖|一区二区免费中文|日本高清无码一区|国产91无码小说|国产黄片子视频91sese日韩|免费高清无码成人网站入口

隨機森林為什么比決策樹好 既然使用神經網絡也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?

既然使用神經網絡也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?這取決于數據量和樣本數。不同的樣本數和特征數據適合不同的算法。像神經網絡這樣的深度學習算法需要訓練大量的數據集來建立更好的預

既然使用神經網絡也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?

這取決于數據量和樣本數。不同的樣本數和特征數據適合不同的算法。像神經網絡這樣的深度學習算法需要訓練大量的數據集來建立更好的預測模型。許多大型互聯網公司更喜歡深度學習算法,因為他們獲得的用戶數據是數以億計的海量數據,這更適合于卷積神經網絡等深度學習算法。

如果樣本數量較少,則更適合使用SVM、決策樹和其他機器學習算法。如果你有一個大的數據集,你可以考慮使用卷積神經網絡和其他深度學習算法。

以下是一個圖表,用于說明根據樣本數量和數據集大小選擇的任何機器學習算法。

如果你認為它對你有幫助,你可以多表揚,也可以關注它。謝謝您!tiktokwai

AI是目前互聯網應用比較好的方向,所以需求比較大。推薦算法的地位還是很好的。推薦算法中有很多方向,如信息流推薦(今日頭條)、電子商務推薦(淘寶)、視頻推送(愛奇藝、抖動、快手等)、廣告推薦(馮超)等,這些業(yè)務幾乎是每個公司的收入。最好的部分,所以備受關注,因此,推薦算法工程師的前景是好的。