卷積神經(jīng)網(wǎng)絡(luò)時間序列預(yù)測 既然使用神經(jīng)網(wǎng)絡(luò)也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?
既然使用神經(jīng)網(wǎng)絡(luò)也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡(luò)這樣的深度學(xué)習(xí)算法需要訓(xùn)練大量的數(shù)據(jù)集來建立更好的預(yù)
既然使用神經(jīng)網(wǎng)絡(luò)也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?
這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡(luò)這樣的深度學(xué)習(xí)算法需要訓(xùn)練大量的數(shù)據(jù)集來建立更好的預(yù)測模型。許多大型互聯(lián)網(wǎng)公司更喜歡深度學(xué)習(xí)算法,因為他們獲得的用戶數(shù)據(jù)是數(shù)以億計的海量數(shù)據(jù),這更適合于卷積神經(jīng)網(wǎng)絡(luò)等深度學(xué)習(xí)算法。
如果樣本數(shù)量較少,則更適合使用SVM、決策樹和其他機(jī)器學(xué)習(xí)算法。如果你有一個大的數(shù)據(jù)集,你可以考慮使用卷積神經(jīng)網(wǎng)絡(luò)和其他深度學(xué)習(xí)算法。
以下是一個圖表,用于說明根據(jù)樣本數(shù)量和數(shù)據(jù)集大小選擇的任何機(jī)器學(xué)習(xí)算法。
如果你認(rèn)為它對你有幫助,你可以多表揚(yáng),也可以關(guān)注它。謝謝您
卷積神經(jīng)網(wǎng)絡(luò)作為特征提取器,用訓(xùn)練集訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)可以提取訓(xùn)練集的特征嗎?還是只能提取測試集的?
1. 卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)
2。卷積神經(jīng)網(wǎng)絡(luò)的發(fā)展歷史
3。反向傳播
當(dāng)用訓(xùn)練集訓(xùn)練卷積神經(jīng)網(wǎng)絡(luò)(CNN)時,卷積神經(jīng)網(wǎng)絡(luò)正向傳播的卷積池過程就是特征提取過程。最后,計算出網(wǎng)絡(luò)的損失函數(shù),然后根據(jù)鏈導(dǎo)數(shù)規(guī)則,利用反向傳播算法更新網(wǎng)絡(luò)的權(quán)值參數(shù)。這是調(diào)整各層網(wǎng)絡(luò)和卷積核的特征抽取器的參數(shù)(各層的特征和功能不同)。
訓(xùn)練是為了使整個卷積神經(jīng)網(wǎng)絡(luò)的特征提取效果更好(越來越適合于訓(xùn)練集),所以訓(xùn)練后的卷積神經(jīng)網(wǎng)絡(luò)可以提取訓(xùn)練集的特征。
運行測試集的目的是測試特征提取器的能力。此時,通過訓(xùn)練集對CNN各層的參數(shù)進(jìn)行訓(xùn)練,可以提取出相似訓(xùn)練集的參數(shù)(圖像、聲音、文本)。此時,我們需要再次運行測試集來測試CNN的特征提取能力。
數(shù)據(jù)集:機(jī)器學(xué)習(xí)任務(wù)中使用的一組數(shù)據(jù),每個數(shù)據(jù)集稱為一個樣本。反映樣品在某一方面的性能或性質(zhì)的項目或?qū)傩苑Q為特征。
訓(xùn)練集:訓(xùn)練過程中使用的數(shù)據(jù)集,其中每個訓(xùn)練樣本稱為訓(xùn)練樣本。從數(shù)據(jù)中學(xué)習(xí)模型的過程稱為學(xué)習(xí)(訓(xùn)練)。
測試集:學(xué)習(xí)模型后,將其用于預(yù)測的過程稱為測試,使用的數(shù)據(jù)集稱為測試集,每個樣本稱為測試樣本。
機(jī)器學(xué)習(xí)需要哪些數(shù)學(xué)基礎(chǔ)?
主要是線性代數(shù)和概率論。
現(xiàn)在最流行的機(jī)器學(xué)習(xí)模型,神經(jīng)網(wǎng)絡(luò)基本上有很多向量、矩陣、張量。從激活函數(shù)到損失函數(shù),從反向傳播到梯度下降,都是對這些向量、矩陣和張量的運算和操作。
其他“傳統(tǒng)”機(jī)器學(xué)習(xí)算法也使用大量線性代數(shù)。例如,線性回歸與線性代數(shù)密切相關(guān)。
從線性代數(shù)的觀點來看,主成分分析是對協(xié)方差矩陣進(jìn)行對角化。
尤其是當(dāng)你讀論文或想更深入的時候,概率論的知識是非常有用的。
它包括邊緣概率、鏈?zhǔn)揭?guī)則、期望、貝葉斯推理、最大似然、最大后驗概率、自信息、香農(nóng)熵、KL散度等。
神經(jīng)網(wǎng)絡(luò)非常講究“可微性”,因為可微模型可以用梯度下降法優(yōu)化。梯度下降和導(dǎo)數(shù)是分不開的。所以多元微積分也需要。另外,由于機(jī)器學(xué)習(xí)是以統(tǒng)計方法為基礎(chǔ)的,因此統(tǒng)計知識是必不可少的。但是,大多數(shù)理工科專業(yè)學(xué)生都應(yīng)該學(xué)過這兩部分內(nèi)容,所以這可能不屬于需要補(bǔ)充的內(nèi)容。