雙向lstm和單向lstm 是否存在通用的神經(jīng)網(wǎng)絡(luò)模型,可以處理圖像,語音以及NLP?
是否存在通用的神經(jīng)網(wǎng)絡(luò)模型,可以處理圖像,語音以及NLP?對于目前的深度學(xué)習(xí)模型,雖然深度學(xué)習(xí)的目標(biāo)之一是設(shè)計(jì)能夠處理各種任務(wù)的算法,但是深度學(xué)習(xí)的應(yīng)用還需要一定的專業(yè)化,目前還沒有通用的神經(jīng)網(wǎng)絡(luò)處理
是否存在通用的神經(jīng)網(wǎng)絡(luò)模型,可以處理圖像,語音以及NLP?
對于目前的深度學(xué)習(xí)模型,雖然深度學(xué)習(xí)的目標(biāo)之一是設(shè)計(jì)能夠處理各種任務(wù)的算法,但是深度學(xué)習(xí)的應(yīng)用還需要一定的專業(yè)化,目前還沒有通用的神經(jīng)網(wǎng)絡(luò)處理模型。然而,每一種模式也在相互學(xué)習(xí)、相互融合、共同提高。例如,一些創(chuàng)新可以同時(shí)改進(jìn)卷積神經(jīng)網(wǎng)絡(luò)和遞歸神經(jīng)網(wǎng)絡(luò),如批量標(biāo)準(zhǔn)化和關(guān)注度。一般模型需要在將來提出。
圖像和視頻處理,計(jì)算機(jī)視覺,最流行的是CNN,卷積神經(jīng)網(wǎng)絡(luò),它的變形和發(fā)展,CNN適合處理空間數(shù)據(jù),廣泛應(yīng)用于計(jì)算機(jī)視覺領(lǐng)域。例如,alexnet、vggnet、googlenet、RESNET等都有自己的特點(diǎn)。將上述模型應(yīng)用于圖像分類識別中。在圖像分割、目標(biāo)檢測等方面,提出了更有針對性的模型,并得到了廣泛的應(yīng)用。
語音處理,2012年之前,最先進(jìn)的語音識別系統(tǒng)是隱馬爾可夫模型(HMM)和高斯混合模型(GMM)的結(jié)合。目前最流行的是深度學(xué)習(xí)RNN遞歸神經(jīng)網(wǎng)絡(luò),其長、短期記憶網(wǎng)絡(luò)LSTM、Gru、雙向RNN、層次RNN等。
除了傳統(tǒng)的自然語言處理方法外,目前的自然語言處理深度學(xué)習(xí)模型也經(jīng)歷了幾個(gè)發(fā)展階段,如基于CNN的模型、基于RNN的模型、基于注意的模型、基于變壓器的模型等。不同的任務(wù)場景有不同的模型和策略來解決一些問題。
excel表格里有一條藍(lán)色的雙箭頭線怎樣刪除?
1. 這是一個(gè)公式跟蹤箭頭,可以從圖中所示的位置取消;
2。它是雙向的,但我不知道它是否是一個(gè)公式循環(huán)引用;
3。這可以在公式復(fù)查錯(cuò)誤檢查中查看。