cnn卷積神經(jīng)網(wǎng)絡(luò)模型 深度學(xué)習(xí)和普通的機(jī)器學(xué)習(xí)有什么區(qū)別?
深度學(xué)習(xí)和普通的機(jī)器學(xué)習(xí)有什么區(qū)別?一張圖片顯示了這種關(guān)系。機(jī)器學(xué)習(xí)是人工智能的重要領(lǐng)域之一,而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支。深度學(xué)習(xí)之所以近年來流行起來,是因?yàn)樗黄屏藗鹘y(tǒng)機(jī)器學(xué)習(xí)無法解決的一些問題
深度學(xué)習(xí)和普通的機(jī)器學(xué)習(xí)有什么區(qū)別?
一張圖片顯示了這種關(guān)系。機(jī)器學(xué)習(xí)是人工智能的重要領(lǐng)域之一,而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支。深度學(xué)習(xí)之所以近年來流行起來,是因?yàn)樗黄屏藗鹘y(tǒng)機(jī)器學(xué)習(xí)無法解決的一些問題。
機(jī)器學(xué)習(xí)的意義在于代替人工完成重復(fù)性工作,識別出統(tǒng)一的規(guī)則(模式)。但是對于傳統(tǒng)的機(jī)器學(xué)習(xí)來說,特征提取的難度不?。ㄌ卣骺梢允窍袼?、位置、方向等)。特征的準(zhǔn)確性將在很大程度上決定大多數(shù)機(jī)器學(xué)習(xí)算法的性能。為了使特征準(zhǔn)確,在特征工程部分需要大量的人力來調(diào)整和改進(jìn)特征。完成這一系列工作的前提是,數(shù)據(jù)集中所包含的信息量是充分的,并且易于識別。如果不滿足這一前提,傳統(tǒng)的機(jī)器學(xué)習(xí)算法將在信息的雜亂中失去其性能。深度學(xué)習(xí)的應(yīng)用正是基于這個問題。它的深層神經(jīng)網(wǎng)絡(luò)使它能夠在雜波中學(xué)習(xí),自動發(fā)現(xiàn)與任務(wù)相關(guān)的特征(可以看作是自發(fā)學(xué)習(xí)的特征工程),并提取高級特征,從而大大減少了特征工程部分任務(wù)所花費(fèi)的時間。
另一個明顯的區(qū)別是他們對數(shù)據(jù)集大小的偏好。傳統(tǒng)的機(jī)器學(xué)習(xí)在處理規(guī)則完備的小規(guī)模數(shù)據(jù)時表現(xiàn)出良好的性能,而深度學(xué)習(xí)則表現(xiàn)不好。隨著數(shù)據(jù)集規(guī)模的不斷擴(kuò)大,深度學(xué)習(xí)的效果會逐漸顯現(xiàn)出來,并變得越來越好。對比如下圖所示。
卷積神經(jīng)網(wǎng)絡(luò)為什么最后接一個全連接層?
在基本的CNN網(wǎng)絡(luò)中,全連接層的作用是將圖像特征圖中的特征通過多個卷積層和池化層進(jìn)行融合,得到圖像特征的高層含義,然后用它進(jìn)行圖像分類。
在CNN網(wǎng)絡(luò)中,完全連接層將卷積層生成的特征映射映射到具有固定長度的特征向量(通常是輸入圖像數(shù)據(jù)集中的圖像類別數(shù))。特征向量包含輸入圖像中所有特征的組合信息。該特征向量雖然丟失了圖像的位置信息,但保留了圖像中最具特征的特征,完成了圖像分類的任務(wù)。從圖像分類任務(wù)的角度來看,計算機(jī)只需確定圖像的內(nèi)容,計算輸入圖像的具體類別值(類別概率),輸出最有可能的類別即可完成分類任務(wù)。
為什么在卷積神經(jīng)網(wǎng)絡(luò)中全連接層4096維特征向量?
通常,為了優(yōu)化計算,尺寸通常取為2的指標(biāo)。
在后續(xù)計算全連接層的損耗時,總共應(yīng)該有幾千個類別,所以前一層應(yīng)該是1000個,所以一般是102420484096,以此類推。通過對數(shù)據(jù)集的測試,可以得到一個較好的網(wǎng)絡(luò)結(jié)構(gòu)