決策樹算法的應(yīng)用場(chǎng)景 既然使用神經(jīng)網(wǎng)絡(luò)也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?
既然使用神經(jīng)網(wǎng)絡(luò)也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡(luò)這樣的深度學(xué)習(xí)算法需要訓(xùn)練大量的數(shù)據(jù)集來建立更好的預(yù)
既然使用神經(jīng)網(wǎng)絡(luò)也可以解決分類問題,那SVM、決策樹這些算法還有什么意義呢?
這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡(luò)這樣的深度學(xué)習(xí)算法需要訓(xùn)練大量的數(shù)據(jù)集來建立更好的預(yù)測(cè)模型。許多大型互聯(lián)網(wǎng)公司更喜歡深度學(xué)習(xí)算法,因?yàn)樗麄儷@得的用戶數(shù)據(jù)是數(shù)以億計(jì)的海量數(shù)據(jù),這更適合于卷積神經(jīng)網(wǎng)絡(luò)等深度學(xué)習(xí)算法。
如果樣本數(shù)量較少,則更適合使用SVM、決策樹和其他機(jī)器學(xué)習(xí)算法。如果你有一個(gè)大的數(shù)據(jù)集,你可以考慮使用卷積神經(jīng)網(wǎng)絡(luò)和其他深度學(xué)習(xí)算法。
以下是一個(gè)圖表,用于說明根據(jù)樣本數(shù)量和數(shù)據(jù)集大小選擇的任何機(jī)器學(xué)習(xí)算法。
如果你認(rèn)為它對(duì)你有幫助,你可以多表揚(yáng),也可以關(guān)注它。謝謝您
決策樹法適合什么決策?
決策樹方法是用樹形圖表示決策過程。樹形圖一般由決策點(diǎn)、方案分支、自然狀態(tài)點(diǎn)、概率分支和結(jié)果點(diǎn)組成。樹形圖顯示了兩個(gè)不同的決策環(huán)節(jié),一個(gè)是主觀決策環(huán)節(jié),另一個(gè)是客觀決策環(huán)節(jié)。決策樹方法適合于風(fēng)險(xiǎn)決策。