id3決策樹 什么是決策樹法?
什么是決策樹法?這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡這樣的深度學習算法需要訓練大量的數(shù)據(jù)集來建立更好的預測模型。許多大型互聯(lián)網(wǎng)公司更喜歡深度學習算法,因為他們獲得的
什么是決策樹法?
這取決于數(shù)據(jù)量和樣本數(shù)。不同的樣本數(shù)和特征數(shù)據(jù)適合不同的算法。像神經(jīng)網(wǎng)絡這樣的深度學習算法需要訓練大量的數(shù)據(jù)集來建立更好的預測模型。許多大型互聯(lián)網(wǎng)公司更喜歡深度學習算法,因為他們獲得的用戶數(shù)據(jù)是數(shù)以億計的海量數(shù)據(jù),這更適合于卷積神經(jīng)網(wǎng)絡等深度學習算法。
如果樣本數(shù)量較少,則更適合使用SVM、決策樹和其他機器學習算法。如果你有一個大的數(shù)據(jù)集,你可以考慮使用卷積神經(jīng)網(wǎng)絡和其他深度學習算法。
以下是一個圖表,用于說明根據(jù)樣本數(shù)量和數(shù)據(jù)集大小選擇的任何機器學習算法。
如果你認為它對你有幫助,你可以多表揚,也可以關(guān)注它。謝謝您!