l1正則化能得到稀疏解 循環(huán)神經(jīng)網(wǎng)絡(luò)和遞歸神經(jīng)網(wǎng)絡(luò)的區(qū)別?
循環(huán)神經(jīng)網(wǎng)絡(luò)和遞歸神經(jīng)網(wǎng)絡(luò)的區(qū)別?其實它一般叫遞歸神經(jīng)網(wǎng)絡(luò),但遞歸是時間遞歸(常用),遞歸是結(jié)構(gòu)遞歸神經(jīng)網(wǎng)絡(luò)一個圖可以顯示關(guān)系。機(jī)器學(xué)習(xí)是人工智能的重要領(lǐng)域之一,而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支。深度學(xué)
循環(huán)神經(jīng)網(wǎng)絡(luò)和遞歸神經(jīng)網(wǎng)絡(luò)的區(qū)別?
其實它一般叫遞歸神經(jīng)網(wǎng)絡(luò),但遞歸是時間遞歸(常用),遞歸是結(jié)構(gòu)遞歸神經(jīng)網(wǎng)絡(luò)
一個圖可以顯示關(guān)系。機(jī)器學(xué)習(xí)是人工智能的重要領(lǐng)域之一,而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個分支。深度學(xué)習(xí)之所以近年來流行起來,是因為它突破了傳統(tǒng)機(jī)器學(xué)習(xí)無法解決的一些問題。
機(jī)器學(xué)習(xí)的意義在于代替人工完成重復(fù)性工作,識別出統(tǒng)一的規(guī)則(模式)。但是對于傳統(tǒng)的機(jī)器學(xué)習(xí)來說,特征提取的難度不?。ㄌ卣骺梢允窍袼?、位置、方向等)。特征的準(zhǔn)確性將在很大程度上決定大多數(shù)機(jī)器學(xué)習(xí)算法的性能。為了使特征準(zhǔn)確,在特征工程部分需要大量的人力來調(diào)整和改進(jìn)特征。完成這一系列工作的前提是,數(shù)據(jù)集中所包含的信息量是充分的,并且易于識別。如果不滿足這一前提,傳統(tǒng)的機(jī)器學(xué)習(xí)算法將在信息的雜亂中失去其性能。深度學(xué)習(xí)的應(yīng)用正是基于這個問題。它的深層神經(jīng)網(wǎng)絡(luò)使它能夠在雜波中學(xué)習(xí),自動發(fā)現(xiàn)與任務(wù)相關(guān)的特征(可以看作是自發(fā)學(xué)習(xí)的特征工程),并提取高級特征,從而大大減少了特征工程部分任務(wù)所花費的時間。
另一個明顯的區(qū)別是他們對數(shù)據(jù)集大小的偏好。傳統(tǒng)的機(jī)器學(xué)習(xí)在處理規(guī)則完備的小規(guī)模數(shù)據(jù)時表現(xiàn)出良好的性能,而深度學(xué)習(xí)則表現(xiàn)不好。隨著數(shù)據(jù)集規(guī)模的不斷擴(kuò)大,深度學(xué)習(xí)的效果會逐漸顯現(xiàn)出來,并變得越來越好。對比如下圖所示。