摩根定律邏輯表達(dá)式 邏輯表達(dá)式基本公式?
邏輯表達(dá)式基本公式?這些公式實(shí)際上教會(huì)了人們?nèi)绾问褂蒙鲜龆珊鸵?guī)則來(lái)簡(jiǎn)化或演示邏輯函數(shù)。從名稱可以看出,在邏輯運(yùn)算中簡(jiǎn)化公式很方便。AB a“B=B,(a”=1,a“是變量的逆變量,邏輯變量是二進(jìn)制邏
邏輯表達(dá)式基本公式?
這些公式實(shí)際上教會(huì)了人們?nèi)绾问褂蒙鲜龆珊鸵?guī)則來(lái)簡(jiǎn)化或演示邏輯函數(shù)。
從名稱可以看出,在邏輯運(yùn)算中簡(jiǎn)化公式很方便。AB a“B=B,(a”=1,a“是變量的逆變量,邏輯變量是二進(jìn)制邏輯,只能是0或1)。在這里,這個(gè)方程也可以通過(guò)對(duì)偶性來(lái)擴(kuò)展,
(ab)(a “b)=b,這也表明對(duì)偶性有助于公式的證明。顧名思義,并集的各個(gè)部分首先必須具有相同的因子,然后合并的部分彼此相反。
消除冗余因子的定義有兩部分,從2到3。
A A “B=A B,從公式中,它確實(shí)是一個(gè)消除左公式中一項(xiàng)的因子。證明過(guò)程是:(a “)(ab)=ab。這一步使用了分布規(guī)律的知識(shí)。邏輯運(yùn)算中的分布規(guī)律是非常奇怪的,特別是在這個(gè)公式中。利用邏輯運(yùn)算中的分布規(guī)律,可以實(shí)現(xiàn)一個(gè)變量“或”和兩個(gè)變量?!盎颉钡姆植家?guī)律與算術(shù)運(yùn)算相似。
邏輯函數(shù)化簡(jiǎn),畫星星的那題和配項(xiàng)法的第三步怎么來(lái)的,運(yùn)用了什么公式,簡(jiǎn)單說(shuō)一下,謝謝?
先把后面的BC移到前面,然后像樓上說(shuō)的(a“·(BC)”)“=a+BC,最后根據(jù)吸收定律a+AB=a得到最終結(jié)果
配位法的第三步是反吸收定律AC+BC”=AC+BC“+AB,第四步是使用吸收定律(AB)+(AB)“d=(AB)+d。第五步是使用吸收定律AC+BC”+AB=AC+BC”