卖逼视频免费看片|狼人就干网中文字慕|成人av影院导航|人妻少妇精品无码专区二区妖婧|亚洲丝袜视频玖玖|一区二区免费中文|日本高清无码一区|国产91无码小说|国产黄片子视频91sese日韩|免费高清无码成人网站入口

對(duì)角相等的矩陣怎么求特征值 a和對(duì)角矩陣相似求a的特征值?

什么時(shí)候矩陣主對(duì)角線等于特征值?當(dāng)A-E|=0時(shí),主對(duì)角線為特征值,是主對(duì)角線元素的減法,而對(duì)角矩陣、特征值和對(duì)角線元素相等,正好滿足|A-E|=0。對(duì)角矩陣的運(yùn)算包括同階對(duì)角矩陣的和、差、數(shù)乘、積,

對(duì)角相等的矩陣怎么求特征值 a和對(duì)角矩陣相似求a的特征值?

什么時(shí)候矩陣主對(duì)角線等于特征值?

當(dāng)A-E|=0時(shí),主對(duì)角線為特征值,是主對(duì)角線元素的減法,而對(duì)角矩陣、特征值和對(duì)角線元素相等,正好滿足|A-E|=0。對(duì)角矩陣的運(yùn)算包括同階對(duì)角矩陣的和、差、數(shù)乘、積,結(jié)果仍然是對(duì)角矩陣。

對(duì)角矩陣是指除主對(duì)角線以外的元素都為0的矩陣,常寫(xiě)成diag(a1,a2,一個(gè)).對(duì)角矩陣可以看作是最簡(jiǎn)單的一種矩陣。值得一提的是,對(duì)角線上的元素可以是0或其他值,對(duì)角線上元素相等的對(duì)角矩陣稱為數(shù)量矩陣。對(duì)角線上全是1的對(duì)角矩陣稱為單位矩陣。

0-@qq.com

當(dāng)矩陣除對(duì)角線外所有位置都為零時(shí),矩陣的特征值就是對(duì)角線。

什么樣的矩陣對(duì)角線為特征值?

總結(jié):|A-E|=0,特征值是主對(duì)角元素的減法,而對(duì)角矩陣,特征值和對(duì)角元素相等,正好滿足|A-E|=0。

對(duì)角矩陣是指除主對(duì)角線以外的元素都是零的矩陣,通常寫(xiě)成diag(a1,a2,一個(gè))。對(duì)角矩陣可以被認(rèn)為是最簡(jiǎn)單的一種矩陣。

值得一提的是,對(duì)角線上的元素可以是0或其他值,對(duì)角線上元素相等的對(duì)角矩陣稱為數(shù)量矩陣;對(duì)角線上全是1的對(duì)角矩陣稱為單位矩陣。對(duì)角矩陣的運(yùn)算包括同階對(duì)角矩陣的和、差、數(shù)乘、積,結(jié)果仍然是對(duì)角矩陣。

矩陣是高等代數(shù)以及統(tǒng)計(jì)分析等應(yīng)用數(shù)學(xué)中的常用工具。在物理學(xué)中,矩陣在電路科學(xué)、力學(xué)、光學(xué)和量子物理中都有應(yīng)用。在計(jì)算機(jī)科學(xué)中,三維動(dòng)畫(huà)也需要矩陣。矩陣運(yùn)算是數(shù)值分析領(lǐng)域的一個(gè)重要問(wèn)題。

將一個(gè)矩陣分解成簡(jiǎn)單矩陣的組合,在理論和實(shí)際應(yīng)用中可以簡(jiǎn)化矩陣的運(yùn)算。對(duì)于一些應(yīng)用廣泛且比較特殊的矩陣,如稀疏矩陣、準(zhǔn)對(duì)角矩陣等,都有具體的快速運(yùn)算算法。

與對(duì)角型相似的矩陣特征值?

因?yàn)檫@個(gè)矩陣A可以對(duì)角化成對(duì)角矩陣B,也就是A類(lèi)似于B.a的秩、跡、特征值和行列式可以立即計(jì)算出來(lái),與矩陣b的秩、跡、特征值和行列式相同,這可以看作是一種比較簡(jiǎn)單的計(jì)算矩陣的秩、跡、特征值和行列式的方法。

設(shè)a和b是n階矩陣,如果有一個(gè)n階可逆矩陣p,它使

P^(-1)AP=B

那么矩陣a類(lèi)似于b,記為a ~ b。

a和對(duì)角矩陣相似求a的特征值?

因?yàn)椤癗階方陣A與對(duì)角矩陣A相似的充要條件是A有N個(gè)線性無(wú)關(guān)的特征向量”,A有N個(gè)不同的特征值,那么A一定有N個(gè)線性無(wú)關(guān)的特征向量。所以N階方陣A有N個(gè)不同的特征值?a類(lèi)似于對(duì)角矩陣,反之則不一定成立。

不應(yīng)該是n個(gè)不同的特征值(因?yàn)榭赡苡卸鄠€(gè)根,某個(gè)特征值對(duì)應(yīng)的特征向量可能不止一個(gè)),而是n個(gè)線性無(wú)關(guān)的特征向量。

a和對(duì)角矩陣相似求a的特征值?

如果n階矩陣A類(lèi)似于對(duì)角矩陣,那么“A有n個(gè)不同的特征值”不應(yīng)該是n個(gè)不同的特征值(因?yàn)榭赡苡卸鄠€(gè)根,某個(gè)特征值對(duì)應(yīng)的特征向量可能不止一個(gè)),而應(yīng)該是n個(gè)線性無(wú)關(guān)的特征向量。

可以說(shuō)“如果N階矩陣A類(lèi)似于對(duì)角矩陣,A有N個(gè)線性無(wú)關(guān)的特征向量”,但不同特征值的個(gè)數(shù)不超過(guò)N,但也可以小于N,只要不同特征值對(duì)應(yīng)的所有特征向量之和等于N,A就可以類(lèi)似于對(duì)角矩陣。

矩陣應(yīng)該看作變換矩陣的三個(gè)基本向量,即中間的藍(lán)線是標(biāo)準(zhǔn)直角坐標(biāo)系中矩陣的基本向量,即變換表示原軸單位向量,對(duì)應(yīng)一個(gè)二維向量,原軸單位向量,對(duì)應(yīng)一個(gè)二維向量。

這種對(duì)應(yīng)關(guān)系意味著,如果這個(gè)變換附著在一個(gè)向量上,那么這個(gè)向量所在的標(biāo)準(zhǔn)直角坐標(biāo)系的基向量對(duì)應(yīng)于,可以看作是把基向量的端點(diǎn)拉伸到;

比如一個(gè)向量在標(biāo)準(zhǔn)直角坐標(biāo)系中表示為,變換后在標(biāo)準(zhǔn)直角坐標(biāo)系中,原點(diǎn)

重點(diǎn)是把一個(gè)不屬于這個(gè)維度的方向變換到這個(gè)空間,而這個(gè)變換不是投影,而是函數(shù)對(duì)應(yīng)。

比如一個(gè)向量,變換后為,然后變換的疊加矩陣,也就是基向量,在標(biāo)準(zhǔn)直角坐標(biāo)系中表示為。如果對(duì)矩陣的基向量應(yīng)用矩陣變換比較麻煩,那么原來(lái)的基向量就要重新拆分,依次變換疊加。

此外,還以矩陣和矩陣乘法為例來(lái)說(shuō)明以下問(wèn)題。只有第一個(gè)矩陣的列數(shù)等于第二個(gè)矩陣的行數(shù),才有意義,因?yàn)檫\(yùn)算意味著矩陣空間的所有向量都會(huì)被變換,最后全部被容納在矩陣的向量空間中,可以重疊。

重疊意味著降維。對(duì)于線性空間,非線性變換會(huì)扭曲重疊,其中矩陣的列數(shù)代表基向量的個(gè)數(shù),行數(shù)代表的意義就是原向量空間的維數(shù)。比如有兩列三行,說(shuō)明有兩個(gè)基向量,向量維數(shù)為,三個(gè)維度都需要變換。變換后對(duì)應(yīng)的空間有多少維并不重要,因?yàn)榭梢灾丿B,對(duì)應(yīng)的是行數(shù)。

a和對(duì)角矩陣相似求a的特征值?

A類(lèi)似于對(duì)角矩陣diag(1 2 3 4),所以A的特征值是1,2,3,4。

|A|=1*2*3*4=24

AA*=|A|E

A*=|A|A^(-1)=24A^(-1)

所以A*的特征值是24 * 1(-1)24 * 2(-1)24 * 3(-1)24 * 4(-1)。

即24 12 8 6