python求用戶輸入數(shù)據(jù)的絕對值 spearman相關系數(shù)的檢驗?
spearman相關系數(shù)的檢驗?Python的公式:r,pstats.spearmanr(X1,X2)結(jié)果為:r:相關系數(shù),p:p_value功能:是兩個數(shù)據(jù)集之間關系單調(diào)性的非參數(shù)度量,Spearm
spearman相關系數(shù)的檢驗?
Python的公式:r,pstats.spearmanr(X1,X2)結(jié)果為:r:相關系數(shù),p:p_value功能:是兩個數(shù)據(jù)集之間關系單調(diào)性的非參數(shù)度量,Spearman相關性不題中兩個數(shù)據(jù)集是標準正態(tài)分布的。(檢驗2個變量之間的相關性)r:這個相關系數(shù)在-1和1之間變化,0意思是沒有相關性。相關系數(shù)的絕對值約接近1,相關性越高,p:p值查閱地來表示不查找系統(tǒng)產(chǎn)生具備Spearman相關性的數(shù)據(jù)集的概率(簡單通俗的說,那就是2個變量不相關的概率,總體上,若2個變量的相關系數(shù)越高,則P值會低些較高)。p值并不完全可靠,但相對于大于1500左右的數(shù)據(jù)集很有可能是合理不的。例子:r,pstats.spearmanr([1,2,3,4,5],[5,6,7,8,7])(1234321)x2nnp.random.randn(100,2)y2nnp.random.randn(100,2)stats.spearmanr(x2n)#最終(0.059969996999699973,0.55338590803773591)stats.spearmanr(x2n[:,0],x2n[:,1])#最終(0.059969996999699973,0.55338590803773591)rho,pvalstats.spearmanr(x2n,y2n)#最后gtgtgtrhoarray([[1.,0.05997,0.18569457,0.06258626],[0.05997,1.,0.110003,0.02534653],[0.18569457,0.110003,1.,0.03488749],[0.06258626,0.02534653,0.03488749,1.]])gtgtgtpvalarray([[0.,0.55338591,0.06435364,0.53617935],[0.55338591,0.,0.27592895,0.80234077],[0.06435364,0.27592895,0.,0.73039992],[0.53617935,0.80234077,0.73039992,0.]])gtgtgtrho,pvalstats.spearmanr(x2n.T, y2n.T,axis1)gtgtgtrhoarray([[1.,0.05997,0.18569457,0.06258626],[0.05997,1.,0.110003,0.02534653],[0.18569457,0.110003,1.,0.03488749],[0.06258626,0.02534653,0.03488749,1.]])stats.spearmanr(x2n,y2n,axisNone)#總體的相關性:(0.10816770419260482,0.1273562188027364)stats.spearmanr(x2n.ravel(),y2n.ravel())#總體的相關性:(0.10816770419260482,0.1273562188027364)xintnp.random.randint(10,size(100,2))stats.spearmanr(xint)#(0.052760927029710199,0.60213045837062351)
fab在python中的意思?
?請看:fabs()方法趕往數(shù)字的絕對值,如math.fabs(-10)直接返回10.0.
?語法:
importmath
math.fabs(x)
?參數(shù):x-數(shù)值表達式
?返回值:趕往數(shù)字的絕對值.
?實例:
#!/usr/bin/python
#-*-coding:UTF-8-*-
importmath
#再導入數(shù)學模塊
print#34math.fabs(-45.17):#34,math.fabs(-45.17)
print#34math.fabs(100.12):#34,math.fabs(100.12)
print#34math.fabs(100.72):#34,math.fabs(100.72)
print#34math.fabs(119L):#34,math.fabs(119L)
print#34math.fabs(math.pi):#34,math.fabs(math.pi)
作為輸出結(jié)果:
math.fabs(-45.17):45.17
math.fabs(100.12):100.12
math.fabs(100.72):100.72
math.fabs(119L):119.0
math.fabs(math.pi):3.14159265359